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DIURNAL AND SEMIDIURNAL ATMOSPHERIC TIDES IN RELATION TO PRECIPITATION
VARIATIONS®

GLENN W. BRIER
U.S. Weather Bureau, Washington, D.C.

ABSTRACT

Evidence is presented that precipitation variations in the United States are related to the solar and lunar tidal

forces.

The results of the statistical investigation are consistent with a mathematical model that shows how a small

periodic influence can be of possible importance for the timing of an event such as the initiation of precipitation.

1. INTRODUCTION

The atmosphere undergoes some regular oscillations
which are due to the gravitational effects of the moon and
the combined gravitational and thermal effects of the sun.
It is conventional to call these motions “tides” and to
denote by S, and L,, respectively, the oscillation whose
period is the nth part of the solar day (24 solar hours) and
the nth part of the lunar day (24.87 solar hours). These
tides have been studied by Chapman [4] and others.
Recently Haurwitz [5] has reviewed the present state of
our knowledge regarding these phenomena. In the
variation of surface pressure, S; appears dominant as a
12-hr. oscillation on tropical barograph traces while Sy,
the 24-hr. wave, generally has an amplitude about half
that of S,, with a much less regular distribution over the
globe. The other surface pressure oscillations S;, S,
... L, Ly, ... are smaller and are considered of no
practical significance.

Although the effect of the moon on surface pressure is
small, the phase and amplitude of L;, the larger oscillation,
have been determined by statistical treatment of extensive
data by Chapman [4] and others. The prevailing view in
meteorology has been that on such weather elements as
precipitation, appreciable lunar effects were neither likely
nor detectable. Recently, however, brief reports by
Bradley, Woodbury, and Brier [2] and Adderley and
Bowen {1], in which a statistically significant association
was found between the lunar synodic period of 29.53 days,
and precipitation in the United States and New Zealand,
raised some questions about the possibility of detecting
lunar tidal effects in precipitation. A more detailed report
by Brier and Bradley [3] presented additional evidence
and the suggestion that some of the other lunar periods
entering into tidal theory might be important in describ-
ing or explaining the lunar-precipitation relationship.

1 This work is closely related to the New York University project ©“ Extraterrestrial
Correlations with Meteorological Parameters” supported by the Atmospheric Scictiees
Program, National Science Foundation,

Although our knowledge of the physical processes of
precipitation is not complete enough to formulate a
theory to include tidal effects, at least it seemed desirable
to have a general physical framework that might assist in
the interpretation of the precipitation. Since it is not
possible to distinguish between effects that might be due
to thermal, gravitational, or other causes, this paper con-
siders all or any of these effects as tidal which relate to the
geometry of the situation, i.e., to the positions of the sun,
earth, and moon. This general tidal theory provided some
guidelines for performing specific statistical tests on pre-
cipitation data which are reported here with no attempt
to select only those portions of the results which were
“positive’” or favorable (or unfavorable) to some specific
hypothesis or preconceived idea.

2. ANALYSIS AND RESULTS
SYNODIC, ANOMALISTIC, AND NODICAL CYCLES

The tidal forces acting on the earth are at a maximum
at syzygy, the event of a new moon or full moon, since
the moon and the sun are then in line and pulling together.
The tides are further enhanced at this time if the moon
is on the plane of the ecliptic and is nearest the earth in
its orbit (at perigee). This precise line-up does not
happen often because of the differences in the astronomical
periods involved. The average length of the synodic
cycle (from new moon to new moon) is 29.53 days while
the anomalistic cycle (from perigee to perigee) is 27.55
days. The nodical cycle, the time it takes the moon to
cross the plane of the ecliptic from north to south until
it repeats, 1s 27.21 days. During the period 1900-1962
there were 61 instances when either new or full moon
occurred within two days of perigee and within two days
of crossing the plane of the ecliptic. Now if the basic
cause of the reported period in United States precipitation
data, 1/2 (29.53)=14.765 days, is tidal in nature, the
amplitude of this oscillation should have been greater at
those 61 times, denoted here as D,, than at the remaining
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Ficure 1.—S8ixty-three years of daily total precipitation data for
150 stations in the United States summarized according to the
15 days following new or full moon. A, is the amplitude of the
fitted 14.765-day wave and the arrows show the time of
maximum. Curve (a) refers to all the data (779 synodic
months). Curve (b) is for the 61 synodic months ending on
D, and 61 synodic months beginning on D,, where D, is the
syzygy with maximum tidal force. Curve (¢) is for 122 synodic
months removed from D, by 30 days, and curve (d) is for 122
synodic months removed from D, by 59 days. Curve (e) is
for 122 synodic months removed from D, by 89 days.

times. Daily indices of the total precipitation over the
United States were available for the period 1900 to 1962
and were summarized by synodic months according to
how close the month came to the day D,. The curve (a)
of figure 1 shows for all the data the mean variation in
rainfall during the 15 days following syzygy. This is
essentially the same figure presented by Brier and Bradley
[3] and was shown by them to contain a highly significant
periodic component of 14.765 days. Curve (b) shows
that the largest contribution to the amplitude and phase
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Fiaure 2.—Normal station pressure for May (1931-1940) for
Raleigh, N.C., 75th meridian time. (From [9].)

of this cycle comes from the periods of increased tidal
forces which are near D,. The amplitude A,==0.92 is
about four times as great as that for the remaining cases.
Curves (c) and (e) show that as the anomalistic and
nodical cycles get out of “step” with the synodic cycle,
the pattern shown in curves (a) and (b) becomes less
distinct and less meaningful.

SYNODIC CYCLE IN RELATION TO THE SOLAR AND LUNAR
DAYS

These results and those reported previously have led
to the suggestion that the lunar tidal oscillations (L, or
L;) might be modulating or amplifying the solar (S; or
S) oscillations. It is quite clear, for example, that L,
and S; are in phase with each other twice every synodic
month, though we may be quite ignorant of the physical
details or explanation for either or both of these oscilla-
tions and their interactions. The S; and S, tides have
been studied exteusively for surface pressure data and
taken together account for most of the mean daily surface
pressure variation. A typical curve of the daily pressure
variation for a station in the United States is shown by
figure 2, selected from [9]. From curves such as this,
one might attempt to infer for individual stations the
mean daily variation of vertical motions presumably
related to precipitation processes. However, a more
realistic index of the mean daily variation of vertical
motion might be obtained from the precipitation data, at
least to the extent of determining the time of the day
most favorable for precipitation occurrence. The §; and
S; oscillations in precipitation are often quite pronounced
but differ widely according to season, topography, etc.
Numerous climatological studies of these variations have
been made, both for individual stations and the country
as a whole. Maps of the United States showing geo-
graphical and seasonal variations have been published by
the U.S. Weather Bureau [10] and figure 3 reproduced
here is from that source.

For the purpose of the investigation reported here it
seemed desirable to use hourly summaries and to obtain
a nationwide average on an annual basis to make the
data comparable to the national curves shown in figure 1.
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Fraure 3.—Percentages of excessive rain occurrences per quarter day, 1904-1933.

This was accomplished by using annual summary tables
of precipitation frequencies found in {7]. Table 1 shows
an example of these data for Minneapolis, Minn. The
67 stations available were combined to obtain an estimate
of the frequency of occurrence of precipitation amounts
of 0.01 in. or greater according to the hour of the day.
The results are shown in curve (a) of figure 4. The peak
around 5:00 p.m. is not unexpected and is probably

(From [10].)

associated with the convection of late afternoon. How-
ever, the major peak is around 3:00 a.m. and appears to
be not so well understood. It may be associated with
the area of maximum convergence in the north central
United States during the early morning hours reported
by Hering and Borden [6]. In any case, the semidiurnal
oscillation S, is clearly indicated, the phase of the fitted
wave being shown by the arrows.
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TABLE 1.—Ezxample of dala used to determine a nationwide estimate of hourly precipitation frequency.
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The lower curve of figure 4 is reproduced from Brier and
Bradley [3] and shows the daily rainfall for the United
States plotted as a function of phase of the moon (synodic

decimal). This time scale can be related to the solar day
time scale at the top by means of tidal theory. 1t is
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Ficure 4—Precipitation in the Uaited States. Curve (a) shows
for a network of 67 stations, the relative frequency of precipita-
tion occurrence by hour of the solar day. Curve (b) shows the
average daily rainfall (1900-1962) for 150 stations in the United
States according to the time of the synodic month. The relation
between the upper and lower time seales is fixed by tidal theory
and observations of surface pressure, independent of the
precipitation data.

known that the maximum tidal force occurs when the
moon is overhead, but actual pressure observations show
that the ‘“high tide” in the atmosphere occurs about 1 hr.
after lunar transit. This means that on the day of the
new moon the highest tide should oceur at 1:00 p.m. and
about 50 min. later on each succeeding day. Thus, about
15 days later, at full moon, the highest tide should occur
about 1:00 a.m. This relationship was used to fix the
solar day time scale to the synodic month time scale in
figure 4. Examining curve (b), one can see that the pre-
cipitation peak falling a few days after the full moon
corresponds to the time of the synodic month when the
moon is overhead at around 3:00 a.m., when conditions
are most favorable for precipitation. There is another
peak a few days after new moon, corresponding to the
time of the synodic month, when the moon is overhead
near the time most favorable for precipitation in the late
afternoon. The arrow on curve (b) shows that the time
of the maximum of the fitted 14.765 day wave is at
synodic decimal 0.17 (and 0.67) which is exactly the same
as the phase determined for curve (a). The agreement
between the two curves could be fortuitous but the chance
is only 1 in 50 that unrelated phenomena or random data
would give such a good agreement in phase.

L, OSCILLATION IN HIGH RAINFALL RATES

The preceding results led to consideration of the pos-
sibility of detecting the lunar tidal oscillation L, in bourly
precipitation data. The smallness of these components
in surface pressure tends to argue against this possibility
and an extensive statistical analysis of hourly pre-
cipitation data for a large number of stations did not
appear practicable at this time. However, from 1900 to
1920 the U.S. Weather Bureau [8] published the date and
time of beginning of all occasions of excessive amounts of
precipitation falling in 1 hr. or less for all stations in the
United States furnished with self-registering gages. These
records seemed suitable for statistical analysis. TFor each
calendar month a selection was made of the three stations
reporting the highest totals of precipitation for the storm
period during which the excessive rate was mieasured.
There was the further requirement that no two events
could be selected on the same day. No geographic stratifi-
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Ficure 5.—The variation in the relative frequency of excessive
amounts of precipitation falling in a period of 1 hr. or less
according to: (a) the day of the synodic month, (b) the local
standard time at which the excessive rate began, and (c) the
time at which the excessive rate began in respect to the lunar
day. Data comprise a selection for each month from 1900 to
1920 of the three first-order Weather Bureau stations reporting
the highest totals of storm precipitation.

cation was attempted although the method of selection
would tend to favor stations with high rainfall and sta-
tions in those parts of the country where precipitation
falls in the form of rain instead of snow. However, the
selection was completely objective, with no bias toward
any lunar time scale. These events were then summarized
according to (a) the synodic month, (b) the hour of the
solar day, and (c¢) the hour of the lunar day.

The results are shown in the three curves of figure 5.
Curve (a) shows the maximum peak in frequency of oc-
currence of high rainfall rates a few days after the full
moon and is consistent with the results of Bradley et al.
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Ficure 6.—The variation in the relative frequency of excessive
amounts of precipitation falling in a period of 1 hr. or less and
plotted as a funetion of the solar hour and lunar hour. Lunar
hour 24 refers to lower transit position of the moon and lunar
hour 12 to the upper transit position. Data used were the same
as in figure 5.

[2]. Curve (b) shows no significant component for either
S, or S; but this is not surprising in view of the averaging
that has taken place and the wide variation in the United
States of the phase and amplitude of the S; and S, oscilla-
tion in precipitation. The unexpected result was the
magnitude and significance of the L, oscillation shown in
curve (¢). This component is highly significant (p=0.01),
accounting for 34 percent of the variance in the un-
smoothed curve, while the L, component accounts for
only 12 percent and is not significant. The greatest
frequency of excessive rates of precipitation is shown at
5 hr. after lower lunar transit with a secondary peak 2 hr.
after upper transit. No explanation is available as to why
the greatest rates of precipitation should oceur a few hours
after the tidal forces reach a maximum but theoretical
studies and further statistical investigation might pro-
vide some additional insight.

Figure 6 shows the result of one study that was made to
obtain an estimate of the importance of the solar-lunar
hour interactions. The highest peak on this graph is at
3:00 am., 4 hr. after lower lunar transit. The second
highest peak is about 7:00 p.m., 2 hr. after upper lunar
transit. On this chart there is a range of about six fold
(from 32 to 183) in the relative frequency of precipitation
events in spite of the rather severe smoothing that was
used which would reduce the true amplitude of any solar-
lunar effect. Thus, there is a strong indication that solar
hour and lunar hour should be considered jointly or in
combination.
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3. A POSSIBLE INTERPRETATION

As pointed out recently by Haurwitz [5], it is known
that at the earth’s surface the lunar atmospheric tide L,
is about ¥s the size of the solar atmospheric tide S..
The smallness of this as well as of other known extra-
terrestrial forces has led many to conclude that no appre-
ciable weather effects are likely as a result of such lunar
or solar variations since the forces involved in the day-to-
day weather changes are so much greater in magnitude.
Some proponents of extraterrestrial effects have made
vague suggestions of “trigger” effects, but usually no de-
tailed physical mechanisms have been described to show
how the small amounts of energy in the “trigger’” could be
amplified to produce large effects. No attempt will be
made to resolve this controversy here but it does seem
possible to propose a very simple mathematical model to
show how relatively small influences can be reflected in
the statistics of geophysical or other natural phenomena.

Let us assume that a system changes from one state to
another when some limiting influence or force F' reaches
a threshold or critical level F,. This is illustrated by the
solid sloping line in figure 7 where the change in state takes
place at time t, when the increasing force I” reaches the
critical value F,. An example from hydrodynamics is the
transition from laminar to turbulent flow in a pipe when
a critical Reynolds number is reached. An example from
biology is the transition of an organism from the living
state to the dead, in response to a continuous increase in
the level of a toxin in the blood. Similarly, in the at-
mosphere we may suppose that a change from ‘“no rain”
to “rain” takes place when a limiting factor in the pre-
cipitation process reaches a certain critical value.

From figure 7, it is clear that if some small-amplitude
periodic function f is added to F to produce the resultant
shown by the dashed line, the time at which the change
of state takes place becomes ¢, instead of #. The time
difference t,—¢, depends upon the phase of the periodic
force f, which in the long run can be considered random
with respect to #,. If the double amplitude (total range)
of fin a given period of time is given by Af and we assume
that F is changing very nearly linearly as it approaches
F,, then the influence of f on the timing of the change
in state depends upon Af relative to dF/dt, the rate of
change of F. The larger Af is and the smaller dF/dt is,
the greater is the influence of f on the exact timing of
event F, the change of state. In respect to the exact
timing of E it is interesting to note that the absolute
magnitude of F is not involved or even the relative
intensity f/F. The important factor is Af, the total
range in f, relative to the rate of change of #.

The argument is p'aced on a quantitative basis by a
simple numerical experiment summarized in figure 8.2 In

2T wish to thank E, N. Lorenszor pointing out ‘that the same results can be obtained
analytically. With 5 sufficiently small, the combined curve F-}f has no negative slope
and thus the probability of the event is simply proportional to the slope of I+f, forming
a sine curve. For large § the probability is obviously zero{vror some phases of f and pro-
portional te F+/ for the remaining phases.
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Fraure 7—How the time reaching a critical level F, can be changed
by the superposition  of a periodic force f on a force F which is
changing slowly with time.
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Ficure 8.—Distribution showing relative frequency of occurrence
of F (change in state) according to the decimal class of period 7.
Curves (a) to (e) are for various ratios §=Af/AF where Af is the
total range in a cosine wave of period T and AF is the total
change during the period 7 of the linearly increasing function F.

this experiment f was represented by a cosine wave
(Af=2) with a period of 100 units of time and the slope
dF/dt was permitted to vary over a large range. The
curves plotted are for various values of ratio 6=Af/AF
where AF is the total change in the linear function F
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Ficure 9.—Distribution of events E in respect to the phase of
a 24-hr, and 25-hr. cosine wave with amplitudes 1.00 and 0.05
respectively. Events F are defined as the time when the critical
level F, is first equalled or exceeded and the length of the bars on
the “clock’ dials indicate the relative frequency of these events
as F, varies from 1.05 to 0.00.

during an interval of 100 units of time, the length of
period of the cosine wave. Curve (a) is for the case
when f has a total range of 1/25th of the change of F in
the period and shows the expected distribution of events
E according to the time of the periodic function which
reaches its maximum at O.

The expected frequency is 0.10 since in computing
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these curves the frequency counts were smoothed by
using 10-unit moving totals for the 100 classes involved.
Thus, if the periodic function f has no influence, one
would expect to find 1/10th of all events £ in any interval
of time which is 1/10th of the total period T of the cosine
wave. Curve (a) shows wvariations that range from
about 30 percent below to 30 percent above expectation,
For §=0.20 the variations from expectation are as great
as & 70 percent. It will be noticed that the maximum
frequency of events K comes between 0.70 and 0.80,
as expected, because this is the point during the cycle
when f is increasing in magnitude most rapidly.

An obvious extension can easily be made to the case
when both F and f are periodic with periods 7" and 7 and
amplitudes A and @ respectively. A proper choice of
F, (producing sufficiently rare events) will result in a
systematic distribution of events E in respect to the
phase of cycles 7' and + which will be practically inde-
pendent of the amplitudes A and a. In other words,
the time of occurrence of event I will depend jointly on
the phases of cycles 7 and = and not on the relative
amplitude A/a

This is illustrated in figure 9 where T and = were
chosen as 24 hr. and 25 hr., respectively, with A=1.00
and ¢=0.05. When F,=1.05, event £ occurs only one
day out of 25 (p=0.04) and the timing of this event, as
shown by the two clocks, is as much determined by the
phase of the 25-hr. wave as by the phase of the 24-hr.
wave. As F, approaches zero, the relative influence of
the 25-hr. wave decreases and the phase of the 24-hr. wave
becomes dominant.

It is not necessary, of course, for the superposed force
£ to be sinusoidal, or for that matter to be either periodic
or continuous. For example, one might have discrete
impulses such as might be produced in atmospheric proc-
esses by the sudden influx of solar particles or by an
attempt by man to modify the weather by seeding clouds.
In"regard to the possible influences of such quantities
on the timing of weather events that involve a change in
state, it appears that the relevant factor is the magnitude
of the time variation of those impulses or forces in relation
to the rate of change of the other forces existing when
critical levels are being approached. In the context of
this paper, which is concerned with examining the evi-
dence relating lunar tides to precipitation, it is suggested
that since the lunar tides represent real physical forces
it is reasonable to expect them to affect the time that
rainfall begins when conditions otherwise become favor-
able for rainfall. This is quite different, of course, from
contending that lunar tides cause precipitation in a direct
manner.

4. SUMMARY AND CONCLUSIONS

In examining tidal theory as a possible general physical
framework to assist in the interpretation of the association
found between precipitation and the lunar synodic month,
three separate lines of evidence have been presented.
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The first of these is concerned with the stratification of
63 years of daily precipitation data for the United States
according to the magnitude of the tidal forces. Theory
predicts that maximum effects should be observed at the
time of syzygy when the moon is at perigee and on the
plane of the ecliptic. This involves the synodic, anoma-
listic, and nodical periods of the mioon which enter into
tidal theory. The precipitation data show that the
14.765-day cycle has its maximum amplitude during the
periods when these ‘‘ideal”’ conditions prevail. At these
times the average amount of precipitation over the
United States was 20 percent higher two days after
syzygy than it was two days before. These results
suggest that it might be profitable to determine the
vertical and horizontal tidal forces on a daily or hourly
basis for a long period of time and study them in relation
to precipitation.

The second type of evidence has to do with the inter-
action between the lunar tides L, and I, and the solar
tidal oscillations S; and S,. The lunar and solar oscilla-
tions are in phase with each other every 14.765 days
(twice a synodic month); therefore, one might expect
that peak precipitation would occur on those days when
the lunar tides are at a maximum at the time of the
solar day most favorable for precipitation. Climatological
data show that for the country as a whole, the most
favorable time for precipitation is about 3:00 a.m. solar
time and that the second most favorable time is about
5:00 p.m. The 63 years of daily precipitation data for
the United States show that the maximum precipitation
occurs on those days of the synodic month when upper
lunar transit occurs shortly before 3:00 a.m. and shortly
before 5:00 p.m. Since the L, and L, oscillations depend
upon latitude (as well as other factors) and the S, and S,
oscillations in precipitation vary widely over the earth
and from season to season, it follows that different stations
or geographical areas might show considerably different
patterns of the distribution of daily rainfall during the
synodic month. Tnvestigators should be extremely cau-
tious in extrapolating the average results for the United
States to other areas or to individual stations.

The final bit of evidence presented here is the lunar L,
oscillation in the hourly data for excessive rates of pre-
cipitation and the interaction of the lunar hour with the
solar hour. Whether or not L, is detectable in other
hourly rainfall data is yet to be determined. It may be
that L, is important in the precipitation processes only
when all other conditions are favorable to rainfall, and
that tidal forces affect the timing of the precipitation by
triggering some instability, thus making 1t unnecessary
to invoke new or little-understood complex physical
mechanisms involving such things as meteoritic dust, for
example? A colleague has suggested that . . . with the

This is not intended to imply that processes such as the lunar modulation of freezing
nuclei counts, for example, should be excluded from consideration.
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lunar semidiurnal pressure oscillation well established,
and the temperature oscillation and the oscillation in the
wind that should accompany this found, an effect of the
moon on precipitation should probably be expected.”
The mathematical model and numerical example discussed
in section 3 suggest that relatively small periodic in-
fluences can produce real and detectable variations in
frequency data of this type.

Although all of the foregoing evidence is consistent with
general tidal theory and the deductive arguments of
section 3, it cannot be concluded that gravitational tidal
forces are the actual causes of the phenomena. The
important variables in the tidal equations are the distances
to the sun and the moon and their zenith angles. These
same variables are important in other physical models
that might be examined. Although it may be difficult
to discover the exact physical mechanisms responsible
for the lunar-precipitation relationship, tidal theory has
provided a convenient framework to synthesize some of
the observations and has led to further investigations
from which it appears that additional clues have been
obtained.
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